+ Rispondi alla Discussione
Pag 3 di 3 PrimaPrima 123
Risultati da 51 a 54 di 54
  1. #51
    Il Nonno L'avatar di gmork
    Data Registrazione
    17-01-03
    Località
    Ovunque
    Messaggi
    6,928

    Predefinito Re: Arp ed i Quasar Vs Hubble ed il redshift: e quindi?

    quindi tra le conseguenze della teoria di arp l'eta' dell'universo, che si da per sicura, sarebbe da cestinare e mi pare di capire anche le dimensioni stimate. giusto?

  2. #52
    Qoelet
    ospite

    Predefinito Re: Arp ed i Quasar Vs Hubble ed il redshift: e quindi?

    Ovviamente: Quando dicevo che si dovrebbe ripartire da 40 anni fa non dicevo a caso. L'età e la dimensione dell'universo sono stimate partendo dal presupposto che ci sia stato un Big Bang e calcolando le distanze per mezzo del redshift cosmologico: se il redshift cosmologico non esiste, le distanze ovviamente non sono quelle e se l'universo è stazionario non c'è mai stato neppure il big bang... l'età dell'universo risulterebbe calcolata con una regressione da dati completamente sbagliati, basadosi su di un modello falso.

  3. #53
    Lo Zio L'avatar di Emack
    Data Registrazione
    21-08-08
    Messaggi
    3,607

    Predefinito Re: Arp ed i Quasar Vs Hubble ed il redshift: e quindi?

    Grazie per la spiegazione, Q.

  4. #54
    L'Onesto L'avatar di DBX
    Data Registrazione
    08-12-01
    Località
    VR-MO
    Messaggi
    1,402

    Predefinito Riferimento: Arp ed i Quasar Vs Hubble ed il redshift: e quindi?

    Letto ora sul forum di Bad Astronomy e Unvierse Today e mi sono ricordato di questo topic:



    How do we know how much dust and gas there is in intergalactic space? This is important for many reasons. We have to have a good assessment of the density of intergalactic particles and gases in order to correctly judge how much these atoms and molecules attenuate the light from distant supernova, and everything else. Any estimate of distants, expansion rates, and cosmic acceleration rely heavily upon estimates of the thickness or concentration of the intergalactic medium.

    Traditionally, the intergalactic medium has been calculated by measuring the spectral absorption lines in front of quasars or active galactic nuclei. These studies have consistently indicated there is little absorbing gas in the vast volume of space. Arp and others have consistently argued that quasars are displaced in space and time, and that there is an instrinsic redshift in quasar spectra that belies their true distance.

    Now there is a evidence that possibly supports Arp's argument from a surprising source: Very distant hard gamma rays. Two papers archive today use similar data to reach the same conclusion: There appear to be many more pockets of intergalactic gas between us and intense gamma rays than there are in front of quasars:

    arXiv:0906.3269 Statistics and characteristics of MgII absorbers along GRB lines of sight observed with VLT-UVES Vergani et al

    Originally Posted by Vergani et al
    We investigate in detail the properties of strong Mg ii systems observed with UVES, deriving an estimate of both the H i column density and the associated extinction. Both the estimated dust extinction in strong GRB(Gamma ray bursts). Mg ii systems and the equivalent width distribution are consistent with what is observed for standard QSO systems. We find also that the number density of (sub)-DLAs per unit redshift in the UVES sample is probably twice larger than what is expected from QSO sightlines which confirms the peculiarity of GRB lines of sight. These results indicate that neither a dust extinction bias nor different beam sizes of the sources are viable explanations for the excess.

    and

    arXiv:0906.3191Non variability of intervening absorbers observed in the UVES spectra of the “naked-eye” GRB080319 D’Elia et al

    Originally Posted by D'Elia
    This confirms the excess of strong MgII absorbers compared to quasars, with dn/dz = 0.9, about 4 times larger than the one observed along quasar lines of sight. In addition, the analysis of multi-epoch, high resolution spectra allowed us to exclude a significant variability in the column density of the single components of each absorber. Combining this result with estimates of the size of the emitting region, we can reject the hypothesis that the difference between GRB and QSO MgII absorbers is due to a different size of the emitting regions.
    How does this support Arp's argument? Arp argues quasars are much closer to our own galaxy than their apparent redshift distance. If he is correct, and gamma ray redshifts are cosmically much more distant, we must find the concentration of intervening gasses to be greater between gamma ray sources and our galaxy than they appear to be in front of quasars estimated to have the same redshift and distance. In both of these papers, this appears to be exactly true: There is much more intervening gas 'in front' of gamma ray bursts than there is 'in front' of quasars. This is also consistent with the observational fact that the galaxies surrounding (or assumed to surround) gamma ray events are much more attenuated than expected: We can't find galaxies were they should be.

    This also supports my argument that the attenuating effects of the intergalactic gas are causing poor estimates of the absolute magnitude of distant supernova events.


    Vergani et al conclude:

    Originally Posted by Vergani et al
    Both the estimated dust extinction in strong GRB Mg ii systems and the equivalent width distribution are consistent with what is observed for standard QSO systems. We find also that the number density of (sub)-DLAs per unit redshift in the UVES sample is probably twice larger than what is expected from QSO sightlines which confirms the peculiarity of GRB lines of sight. These results indicate that neither a dust extinction bias nor diff erent beam sizes of the sources are viable explanations for the excess. It is still possible that the current sample of GRB lines of sight is biased by a subtle gravitational lensing effect. More data and larger samples are needed to test this hypothesis.
    Likewise E'Elia concludes:

    Originally Posted by D'Elia
    The total redshift path becomes 17.02, and this results in a dn/dz = 0.94. This surprising excess of strong MgII absorbers with respect to QSO sightlines remains a matter of debate and a satisfactory explanation is still missing. Clearly more observations and analysis are needed in order to solve this issue.


    Link alla discussione: http://www.bautforum.com/against-mai...e-one-arp.html
    Ultima modifica di DBX; 30-06-09 alle 14:15:53 Motivo: link

+ Rispondi alla Discussione
Pag 3 di 3 PrimaPrima 123

Permessi di Scrittura

  • Tu non puoi inviare nuove discussioni
  • Tu non puoi inviare risposte
  • Tu non puoi inviare allegati
  • Tu non puoi modificare i tuoi messaggi
  • Il codice BB è Attivato
  • Le faccine sono Attivato
  • Il codice [IMG] è Attivato
  • Il codice HTML è Disattivato